How to optimise learning rates in XGBoost example 2 in python

This recipe helps you optimise learning rates in XGBoost example 2 in python

Recipe Objective

Many a times while working on a dataset and using a Machine Learning model we don"t know which set of hyperparameters will give us the best result. Passing all sets of hyperparameters manually through the model and checking the result might be a hectic work and may not be possible to do.

To get the best set of hyperparameters we can use Grid Search. Grid Search passes all combinations of hyperparameters one by one into the model and check the result. Finally it gives us the set of hyperparemeters which gives the best result after passing in the model.

So this recipe is a short example of how can optimise multiple parameters in XGBoost.

Sentiment Analysis Project on eCommerce Product Reviews with Source Code

Step 1 - Import the library - GridSearchCv

from sklearn import datasets from sklearn.model_selection import train_test_split from xgboost import XGBClassifier from sklearn.model_selection import GridSearchCV from sklearn.model_selection import StratifiedKFold import numpy

Here we have imported various modules like numpy, test_train_split, datasets, XGBClassifier and GridSearchCV from differnt libraries. We will understand the use of these later while using it in the in the code snipet.
For now just have a look on these imports.

Step 2 - Setup the Data

Here we have used datasets to load the inbuilt wine dataset and we have created objects X and y to store the data and the target value respectively. dataset = datasets.load_wine() X = dataset.data y = dataset.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)

Step 3 - Using Model

Here, we are using XGBClassifier as a Machine Learning model to use GridSearchCV. So we have created an object model. model = XGBClassifier()

Step 5 - Parameters to be optimized

In XGBClassifier we want to optimise learning rate by GridSearchCV. So we have set the parameter as a list of values form which GridSearchCV will select the best value of parameter. n_estimators = [100, 200, 300, 400, 500] learning_rate = [0.0001, 0.001, 0.01, 0.1] param_grid = dict(learning_rate=learning_rate, n_estimators=n_estimators) kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=7)

Step 6 - Using GridSearchCV and Printing Results

Before using GridSearchCV, lets have a look on the important parameters.

  • estimator: In this we have to pass the models or functions on which we want to use GridSearchCV
  • param_grid: Dictionary or list of parameters of models or function in which GridSearchCV have to select the best.
  • Scoring: It is used as a evaluating metric for the model performance to decide the best hyperparameters, if not especified then it uses estimator score.
  • cv: It signifies the number of splits in cross validation.

Making an object grid_search for GridSearchCV and fitting the dataset i.e X and y grid_search = GridSearchCV(model, param_grid, scoring="neg_log_loss", n_jobs=-1, cv=kfold) grid_result = grid_search.fit(X, y) Now we are using print statements to print the results. It will give the values of hyperparameter as a result. print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_)) means = grid_result.cv_results_["mean_test_score"] stds = grid_result.cv_results_["std_test_score"] params = grid_result.cv_results_["params"] for mean, stdev, param in zip(means, stds, params): print("%f (%f) with: %r" % (mean, stdev, param)) As an output we get:

Best: -0.077744 using {"learning_rate": 0.1, "n_estimators": 200}
-1.086577 (0.000539) with: {"learning_rate": 0.0001, "n_estimators": 100}
-1.074744 (0.001073) with: {"learning_rate": 0.0001, "n_estimators": 200}
-1.063105 (0.001605) with: {"learning_rate": 0.0001, "n_estimators": 300}
-1.051657 (0.002128) with: {"learning_rate": 0.0001, "n_estimators": 400}
-1.040397 (0.002643) with: {"learning_rate": 0.0001, "n_estimators": 500}
-0.986714 (0.005129) with: {"learning_rate": 0.001, "n_estimators": 100}
-0.891275 (0.009533) with: {"learning_rate": 0.001, "n_estimators": 200}
-0.808661 (0.013511) with: {"learning_rate": 0.001, "n_estimators": 300}
-0.736632 (0.016334) with: {"learning_rate": 0.001, "n_estimators": 400}
-0.673480 (0.018467) with: {"learning_rate": 0.001, "n_estimators": 500}
-0.443098 (0.032668) with: {"learning_rate": 0.01, "n_estimators": 100}
-0.236960 (0.048792) with: {"learning_rate": 0.01, "n_estimators": 200}
-0.159834 (0.052822) with: {"learning_rate": 0.01, "n_estimators": 300}
-0.125159 (0.056987) with: {"learning_rate": 0.01, "n_estimators": 400}
-0.108292 (0.059112) with: {"learning_rate": 0.01, "n_estimators": 500}
-0.083225 (0.059937) with: {"learning_rate": 0.1, "n_estimators": 100}
-0.077744 (0.057482) with: {"learning_rate": 0.1, "n_estimators": 200}
-0.077754 (0.057472) with: {"learning_rate": 0.1, "n_estimators": 300}
-0.077754 (0.057472) with: {"learning_rate": 0.1, "n_estimators": 400}
-0.077754 (0.057472) with: {"learning_rate": 0.1, "n_estimators": 500}

Download Materials

What Users are saying..

profile image

Gautam Vermani

Data Consultant at Confidential
linkedin profile url

Having worked in the field of Data Science, I wanted to explore how I can implement projects in other domains, So I thought of connecting with ProjectPro. A project that helped me absorb this topic... Read More

Relevant Projects

Customer Churn Prediction Analysis using Ensemble Techniques
In this machine learning churn project, we implement a churn prediction model in python using ensemble techniques.

Learn to Build a Polynomial Regression Model from Scratch
In this Machine Learning Regression project, you will learn to build a polynomial regression model to predict points scored by the sports team.

Recommender System Machine Learning Project for Beginners-4
Collaborative Filtering Recommender System Project - Comparison of different model based and memory based methods to build recommendation system using collaborative filtering.

Model Deployment on GCP using Streamlit for Resume Parsing
Perform model deployment on GCP for resume parsing model using Streamlit App.

Time Series Classification Project for Elevator Failure Prediction
In this Time Series Project, you will predict the failure of elevators using IoT sensor data as a time series classification machine learning problem.

Loan Eligibility Prediction using Gradient Boosting Classifier
This data science in python project predicts if a loan should be given to an applicant or not. We predict if the customer is eligible for loan based on several factors like credit score and past history.

Customer Market Basket Analysis using Apriori and Fpgrowth algorithms
In this data science project, you will learn how to perform market basket analysis with the application of Apriori and FP growth algorithms based on the concept of association rule learning.

Build a Face Recognition System in Python using FaceNet
In this deep learning project, you will build your own face recognition system in Python using OpenCV and FaceNet by extracting features from an image of a person's face.

Build Customer Propensity to Purchase Model in Python
In this machine learning project, you will learn to build a machine learning model to estimate customer propensity to purchase.

Build a Collaborative Filtering Recommender System in Python
Use the Amazon Reviews/Ratings dataset of 2 Million records to build a recommender system using memory-based collaborative filtering in Python.