MNIST Dataset : Digit Recognizer Data Science Project

MNIST Dataset : Digit Recognizer Data Science Project

In this data science project, we are going to work on video recognization data and a robust level of image recognization MNIST data.

Videos

Each project comes with 2-5 hours of micro-videos explaining the solution.

Code & Dataset

Get access to 50+ solved projects with iPython notebooks and datasets.

Project Experience

Add project experience to your Linkedin/Github profiles.

Customer Love

Read All Reviews

Dhiraj Tandon

Solution Architect-Cyber Security at ColorTokens

My Interaction was very short but left a positive impression. I enrolled and asked for a refund since I could not find the time. What happened next: They initiated Refund immediately. Their... Read More

Shailesh Kurdekar

Solutions Architect at Capital One

I have worked for more than 15 years in Java and J2EE and have recently developed an interest in Big Data technologies and Machine learning due to a big need at my workspace. I was referred here by a... Read More

What will you learn

Working on Computer Image Data using Tensor flow
Inception Model of Tensor flow
Image Data Recognition using Transfer Learning
Video Recognition of Neural Network
Learn Advanced Model of Neural Network using Tensor flow

Project Description

Start here if...

you’re new to computer vision. This data science project is the perfect introduction to techniques like neural networks using a classic dataset including pre-extracted features.

Description:

MNIST ("Modified National Institute of Standards and Technology") is the de facto “hello world” dataset of computer vision. Since its release in 1999, this classic dataset of handwritten images has served as the basis for benchmarking classification algorithms. As new machine learning techniques emerge, MNIST remains a reliable resource for researchers and learners alike.

In this data science project, our goal is to correctly identify digits from a dataset of tens of thousands of handwritten images. We encourage you to experiment with different algorithms to learn first-hand what works well and how techniques compare.

Practice Skills:

  • Computer vision fundamentals including simple neural networks

Data Introduction:

Each image is 28 pixels in height and 28 pixels in width, for a total of 784 pixels in total. Each pixel has a single pixel-value associated with it, indicating the lightness or darkness of that pixel, with higher numbers meaning darker. This pixel-value is an integer between 0 and 255, inclusive.

The training data set, (train.csv), has 785 columns. The first column, called "label", is the digit that was drawn by the user. The rest of the columns contain the pixel-values of the associated image.

Each pixel column in the training set has a name like pixelx, where x is an integer between 0 and 783, inclusive. To locate this pixel on the image, suppose that we have decomposed x as x = i * 28 + j, where i and j are integers between 0 and 27, inclusive. Then pixelx is located on row i and column j of a 28 x 28 matrix, (indexing by zero).

Acknowledgements:

More details about the dataset, including algorithms that have been tried on it and their levels of success, can be found at http://yann.lecun.com/exdb/mnist/index.html. The dataset is made available under a Creative Commons Attribution-Share Alike 3.0 license.

 

Similar Projects

In this project, we are going to work on Sequence to Sequence Prediction using IMDB Movie Review Dataset​ using Keras in Python.

In this neural network project, we are going to develop an algorithm that will automatically identify the boundaries of the car images which will help to remove the photo studio background.

Deep Learning Project- Learn to apply deep learning paradigm to forecast univariate time series data.

Curriculum For This Mini Project

4-Aug-2017
01h 26m
5-Aug-2017
01h 34m