How to create and optimize a baseline linear regression model?
REGRESSION EXAMPLES DATA CLEANING PYTHON DATA MUNGING MACHINE LEARNING RECIPES PANDAS CHEATSHEET     ALL TAGS

How to create and optimize a baseline linear regression model?

How to create and optimize a baseline linear regression model?

This recipe helps you create and optimize a baseline linear regression model

Recipe Objective

Many a times while working on a dataset and using a Machine Learning model we don't know which set of hyperparameters will give us the best result. Passing all sets of hyperparameters manually through the model and checking the result might be a hectic work and may not be possible to do.

To get the best set of hyperparameters we can use Grid Search. Grid Search passes all combinations of hyperparameters one by one into the model and check the result. Finally it gives us the set of hyperparemeters which gives the best result after passing in the model.

So this recipe is a short example of how we can create and optimize a baseline linear regression model

Step 1 - Import the library - GridSearchCv

from sklearn import decomposition, datasets from sklearn import linear_model from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV, cross_val_score from sklearn.preprocessing import StandardScaler

Here we have imported various modules like decomposition, datasets, linear_model, Pipeline, StandardScaler and GridSearchCV from differnt libraries. We will understand the use of these later while using it in the in the code snipet.
For now just have a look on these imports.

Step 2 - Setup the Data

Here we have used datasets to load the inbuilt boston dataset and we have created objects X and y to store the data and the target value respectively. dataset = datasets.load_boston() X = dataset.data y = dataset.target

Step 3 - Using StandardScaler and PCA

StandardScaler is used to remove the outliners and scale the data by making the mean of the data 0 and standard deviation as 1. So we are creating an object std_scl to use standardScaler. std_slc = StandardScaler()

We are also using Principal Component Analysis(PCA) which will reduce the dimension of features by creating new features which have most of the varience of the original data. pca = decomposition.PCA()

Here, we are using Linear Regression as a Machine Learning model to use GridSearchCV. So we have created an object linear. linear = linear_model.LinearRegression()

Step 4 - Using Pipeline for GridSearchCV

Pipeline will helps us by passing modules one by one through GridSearchCV for which we want to get the best parameters. So we are making an object pipe to create a pipeline for all the three objects std_scl, pca and linear. pipe = Pipeline(steps=[('std_scl', std_scl), ('pca', pca), ('linear', linear)])

Now we have to define the parameters that we want to optimise for these three objects.
StandardScaler doesnot requires any parameters to be optimised by GridSearchCV.
Principal Component Analysis requires a parameter 'n_components' to be optimised. 'n_components' signifies the number of components to keep after reducing the dimension. n_components = list(range(1,X.shape[1]+1,1))

Linear Regression requires a parameter 'normalize' to be optimised by GridSearchCV. normalize = [True, False]

Now we are creating a dictionary to set all the parameters options for different modules. parameters = dict(pca__n_components=n_components, linear__normalize=normalize)

Step 6 - Using GridSearchCV and Printing Results

Before using GridSearchCV, lets have a look on the important parameters.

  • estimator: In this we have to pass the models or functions on which we want to use GridSearchCV
  • param_grid: Dictionary or list of parameters of models or function in which GridSearchCV have to select the best.
  • Scoring: It is used as a evaluating metric for the model performance to decide the best hyperparameters, if not especified then it uses estimator score.
Making an object clf for GridSearchCV and fitting the dataset i.e X and y clf = GridSearchCV(pipe, parameters) clf.fit(X, y) Now we are using print statements to print the results. It will give the values of hyperparameters as a result. print('Best Number Of Components:', clf.best_estimator_.get_params()['pca__n_components']) print(); print(clf.best_estimator_.get_params()['linear']) As an output we get:

Best Number Of Components: 4

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=True)

Download Materials

Relevant Projects

RASA NLU chatbot creation
The project will use rasa NLU for the Intent classifier, spacy for entity tagging, and mongo dB as the DB. The project will incorporate slot filling and context management and will be supporting the following intent and entities. Intents : product_info | ask_price|cancel_order Entities : product_name|location|order id The project will demonstrate how to generate data on the fly, annotate using framework and how to process those for different pieces of training as discussed above .

Time Series Forecasting with LSTM Neural Network Python
Deep Learning Project- Learn to apply deep learning paradigm to forecast univariate time series data.

Customer Market Basket Analysis using Apriori and Fpgrowth algorithms
In this data science project, you will learn how to perform market basket analysis with the application of Apriori and FP growth algorithms based on the concept of association rule learning.

Build a Face Recognition System in Python using FaceNet
In this deep learning project, you will build your own face recognition system in Python using OpenCV and FaceNet by extracting features from an image of a person's face.

Identifying Product Bundles from Sales Data Using R Language
In this data science project in R, we are going to talk about subjective segmentation which is a clustering technique to find out product bundles in sales data.

Loan Eligibility Prediction using Gradient Boosting Classifier
This data science in python project predicts if a loan should be given to an applicant or not. We predict if the customer is eligible for loan based on several factors like credit score and past history.

Predict Employee Computer Access Needs in Python
Data Science Project in Python- Given his or her job role, predict employee access needs using amazon employee database.

Data Science Project on Wine Quality Prediction in R
In this R data science project, we will explore wine dataset to assess red wine quality. The objective of this data science project is to explore which chemical properties will influence the quality of red wines.

Demand prediction of driver availability using multistep time series analysis
In this supervised learning machine learning project, you will predict the availability of a driver in a specific area by using multi step time series analysis.

Build a Collaborative Filtering Recommender System in Python
Use the Amazon Reviews/Ratings dataset of 2 Million records to build a recommender system using memory-based collaborative filtering in Python.